油气回收|论坛 - 油气回收技术|论坛

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 7798|回复: 3
打印 上一主题 下一主题

吸收塔相关知识介绍

[复制链接]
跳转到指定楼层
1#
zfs 发表于 2009-12-3 16:03:46 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
本帖最后由 zfs 于 2009-12-3 16:20 编辑

【转自海川论坛】填料塔相关知识

前言
      看到有很多在这里询问一些有关填料塔的基本知识,所以我就搜索了一些资料,粘贴进来,以供广大海友的不时之需。资料来源于互联网,本人水平有限,没有经过严格的筛选,如有有误之处请大家指出,我们共同学习。

填料塔

  摘要
  塔设备有许多种类型,塔设备是化工、石油化工和炼油生产中最重要的设备之一。它可使气液或液液两相之间进行紧密接触,达到相际传质及传热的目的。可在塔设备中完成常见的单元操作有:精馏、吸收、解吸和萃取等。此外,工业气体的冷却与回收、气体的湿法净制和干燥,以及兼有气液两相传质和传热的增

  填料塔的结构特点


  
填料塔结构示意图

 图1所示为填料塔的结构示意图,填料塔是以塔内的填料作为气液两相间接触构件的传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。

  当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。

  填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。

  填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。

  填料塔填料

   填料是填料塔中的传质元件,它可以有不同的分类。填料的类型有两大类:拉西环矩鞍填料;鲍尔环;鲍尔环是在拉西环的壁面上开一层或两层长方形小窗。波纹填料有丝网形和孔板形两大类。

  对填料的基本要求有:传质效率高,要求填料能提供大的气液接触面。即要求具有大的比表面积,并要求填料表面易于被液体润湿。只有润湿的表面才是气液接触表面。生产能力大,气体压力降小。因此要求填料层的空隙率大。不移引起偏流和沟流。经久耐用具有良好的耐腐蚀性,较高的机械强度和必要的耐热性。取材容易,价格便宜。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
2#
 楼主| zfs 发表于 2009-12-3 16:07:31 | 只看该作者
  1、散装填料
    散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料。散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。现介绍几种较为典型的散装填料:
  拉西环 鲍尔环 阶梯环 弧鞍填料 矩鞍填料 金属环矩鞍填料 球形填料
  (1)拉西环填料拉西环填料于1914年由拉西(F. Rashching)发明,为外径与高度相等的圆环。拉西环填料的气液分布较差,传质效率低,阻力大,通量小,目前工业上已较少应用。
  (2) 鲍尔环填料是对拉西环的改进,在拉西环的侧壁上开出两排长方形的窗孔,被切开的环壁的一侧仍与壁面相连,另一侧向环内弯曲,形成内伸的舌叶,诸舌叶的侧边在环中心相搭。鲍尔环由于环壁开孔,大大提高了环内空间及环内表面的利用率,气流阻力小,液体分布均匀。与拉西环相比,鲍尔环的气体通量可增加50%以上,传质效率提高30%左右。鲍尔环是一种应用较广的填料。
  (3) 阶梯环填料是对鲍尔环的改进,与鲍尔环相比,阶梯环高度减少了一半并在一端增加了一个锥形翻边。由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的空隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。阶梯环的综合性能优于鲍尔环,成为目前所使用的环形填料中最为优良的一种。
  (4) 弧鞍填料弧鞍填料属鞍形填料的一种,其形状如同马鞍,一般采用瓷质材料制成。弧鞍填料的特点是表面全部敞开,不分内外,液体在表面两侧均匀流动,表面利用率高,流道呈弧形,流动阻力小。其缺点是易发生套叠,致使一部分填料表面被重合,使传质效率降低。弧鞍填料强度较差,容破碎,工业生产中应用不多。
  (5) 矩鞍填料 将弧鞍填料两端的弧形面改为矩形面,且两面大小不等,即成为矩鞍填料。矩鞍填料堆积时不会套叠,液体分布较均匀。矩鞍填料一般采用瓷质材料制成,其性能优于拉西环。目前,国内绝大多数应用瓷拉西环的场合,均已被瓷矩鞍填料所取代。
  (6) 金属环矩鞍填料 环矩鞍填料(国外称为Intalox)是兼顾环形和鞍形结构特点而设计出的一种新型填料,该填料一般以金属材质制成,故又称为金属环矩鞍填料。环矩鞍填料将环形填料和鞍形填料两者的优点集于一体,其综合性能优于鲍尔环和阶梯环,在散装填料中应用较多。
  (7) 球形填料球形填料一般采用塑料注塑而成,其结构有多种。球形填料的特点是球体为空心,可以允许气体、液体从其内部通过。由于球体结构的对称性,填料装填密度均匀,不易产生空穴和架桥,所以气液分散性能好。球形填料一般只适用于某些特定的场合,工程上应用较少。
  除上述几种较典型的散装填料外,近年来不断有构型独特的新型填料开发出来,如共轭环填料、海尔环填料、纳特环填料等。工业上常用的散装填料的特性数据可查有关手册。
  2.规整填料
  规整填料是按一定的几何构形排列,整齐堆砌的填料。规整填料种类很多,根据其几何结构可分为格栅填料、波纹填料、脉冲填料等。
  (1)格栅填料格栅填料是以条状单元体经一定规则组合而成的,具有多种结构形式。工业上应用最早的格栅填料为木格栅填料。目前应用较为普遍的有格里奇格栅填料、网孔格栅填料、蜂窝格栅填料等,其中以格里奇格栅填料最具代表性。
  格栅填料的比表面积较低,主要用于要求压降小、负荷大及防堵等场合。
  (2)波纹填料目前工业上应用的规整填料绝大部分为波纹填料,它是由许多波纹薄板组成的圆盘状填料,波纹与塔轴的倾角有30°和45°两种,组装时相邻两波纹板反向靠叠。各盘填料垂直装于塔内,相邻的两盘填料间交错90°排列。
  波纹填料按结构可分为网波纹填料和板波纹填料两大类,其材质又有金属、塑料和陶瓷等之分。
  金属丝网波纹填料是网波纹填料的主要形式,它是由金属丝网制成的。金属丝网波纹填料的压降低,分离效率很高,特别适用于精密精馏及真空精馏装置,为难分离物系、热敏性物系的精馏提供了有效的手段。尽管其造价高,但因其性能优良仍得到了广泛的应用。
  金属板波纹填料是板波纹填料的一种主要形式。该填料的波纹板片上冲压有许多f5mm左右的小孔,可起到粗分配板片上的液体、加强横向混合的作用。波纹板片上轧成细小沟纹,可起到细分配板片上的液体、增强表面润湿性能的作用。金属孔板波纹填料强度高,耐腐蚀性强,特别适用于大直径塔及气液负荷较大的场合。
  金属压延孔板波纹填料是另一种有代表性的板波纹填料。它与金属孔板波纹填料的主要区别在于板片表面不是冲压孔,而是刺孔,用辗轧方式在板片上辗出很密的孔径为0.4~0.5mm小刺孔。其分离能力类似于网波纹填料,但抗堵能力比网波纹填料强,并且价格便宜,应用较为广泛。
  波纹填料的优点是结构紧凑,阻力小,传质效率高,处理能力大,比表面积大(常用的有125、150、250、350、500、700等几种)。波纹填料的缺点是不适于处理粘度大、易聚合或有悬浮物的物料,且装卸、清理困难,造价高。
  (3)脉冲填料脉冲填料是由带缩颈的中空棱柱形个体,按一定方式拼装而成的一种规整填料。脉冲填料组装后,会形成带缩颈的多孔棱形通道,其纵面流道交替收缩和扩大,气液两相通过时产生强烈的湍动。在缩颈段,气速最高,湍动剧烈,从而强化传质。在扩大段,气速减到最小,实现两相的分离。流道收缩、扩大的交替重复,实现了“脉冲”传质过程。
  脉冲填料的特点是处理量大,压降小,是真空精馏的理想填料。因其优良的液体分布性能使放大效应减少,故特别适用于大塔径的场合。
3#
 楼主| zfs 发表于 2009-12-3 16:11:29 | 只看该作者
一、填料塔的结构及填料特性
1、填料塔的结构
(图见一楼)
    典型填料塔的结构如图所示,主要部件有塔体、填料及支承、流体分布器及再分布器、除沫器等。操作时,液体自塔上部进入,并通过液体分布气均匀喷洒于塔截面上,并在填料表面呈膜状流下;气体自塔下部进入,通过填料层中的空隙由塔顶排出。气液两相在液膜表面进行传质。

2、填料特性的评价
   填料不仅提供了气液两相的接触表面,而且促使气液两相分散,液膜不断更新。填料性能可以由以下三方面予以评价。
⑴ 比表面积a:填料应提供尽可能多的表面积,以单位填充体积所具有的填料表面来表示填料的这一特性,称为比表面积a,单位为m2/m3。
⑵ 空隙率ε:单位体积填料所具有的空隙体积,称为空隙率。气体是在填料间的空隙内流动的,为减少气体的流动阻力,提高填料塔的允许气速,填料层应有尽可能大的空隙率。
⑶ 填料的几何形状:比表面积、空隙率大致相同而形状不同的两种填料,在流体力学和传质性能上可有显著的差别,但目前对填料
的几何形状还没有定量的表达。
3、几种常用填料
   常用填料有散装填料和规整填料,材质有实体材料和网体材料。

二、气液两相在填料层内的流动

1、液体  
    理想的流动状态是自上而下,沿填料表面成膜状流动,液膜从一个填料到另一个填料不断更新。要求液体在填料表面铺展成膜、液体在塔内的分布要均匀、液膜厚度要合适。
    液体在乱堆填料中有一定的自分布能力。因此,对于小塔,可利用自分布能力,预分布要求校低;对于大塔,很难利用填料的自分布能力达到全塔截面的分布均匀,对初始分布要求校高;另外,填料层内可能出现沟流现象或壁流现象,需对液体进行再分布。
    液体在塔内的液膜厚度与持液量有关,持液量是单位填充体积所具有的液体量。喷淋量大,持液量也大,液膜厚度增加;在正常操作的气速范围内,气速的增加,对液膜厚度的影响不大。

2、气体
    气体在填料塔内在压强差的推动下自下而上穿过填料空隙上升,并与液膜接触进行传质。气体通过填料层的压降与气速及液体流量等因素有关。
    当液体量为零时,干填料的压降Δp随气速u的增大而增大。
    当有液体喷淋时,液体量一定,气速u增大,压降Δp增大,相同气速下压降Δp较干填料的压降高。在气速u较小时,气速u增大,液膜厚度变化不大。当气速u增大到某一值时,液膜厚度开始增大,持液量也增大,出现拦液现象,此时,填料层压降与空塔速度关系曲线的斜率增大,此点称为载点。自载点以后,气速u继续增大到某一值时,持液量大增,液体积累出现液泛现象,此气速值称为液泛气速。  
    液体量增大,泛点气速下降,在相同气速下,液体量大,压降也大。

3、液泛:
    液泛是填料塔的非正常操作。发生液泛时,液体不能顺利流下,气液传质不能正常进行。在泛点之前,气体为连续相,液体为分散相;泛点之后,气体为分散相,液体为连续相。泛点又称为转相点,此时,压降Δp剧增,液体返混和气体液沫夹带的现象严重,传质效果极差。
    设计时,操作气速=50%~80%的泛点气速。泛点气速可根据泛点关联图估计。

4、填料塔的操作范围
当液体量一定时,若气体量很小,传质过程主要靠扩散进行,传质效果不好;气体量很大,将会导致液泛发生。
当气体量一定时,若液体量很小,会有部分填料得不到润湿,传质效果不好;若液体量很大,将会导致液泛发生。
最大气体量或最大液体量,可以根据泛点气速来估计;最小气体量和最小液体量必须根据经验来确定。

5 填料塔的附属结构
⑴ 支撑板:主要是支撑塔内的填料,同时又能保证气液两相的顺利通过。
⑵ 液体分布器:对进入塔内的液体进行分布,使得液体在塔截面上分布均匀。
⑶ 液体再分布器:为改善向壁偏流效应造成的液体分布不均,在填料层内部每隔一定高度设置的装置。
⑷ 除沫器:用来除去由填料层顶部逸出的气体中的液滴,安装在液体分布器上方。

三、板式塔与填料塔的比较

    对许多逆流接触的过程,填料塔和板式塔都可以使用。各种塔型各有优劣,应根据物系综合考虑选择。
⑴ 填料塔操作范围较小,特别是对于液体负荷的变化更为敏感。
⑵ 填料塔不宜于处理易聚合或含有固体悬浮物的物料。
⑶ 当气液接触过程中需要冷却以移出反应热或溶解热时,不适宜用填料塔。另外,当有侧线出料时,填料塔也不如板式塔方便。
⑷ 填料塔的塔径可以很小,但板式塔的塔径一般不小于0.6m。
⑸ 板式塔的设计资料更容易得到而且更为可靠,安全系数可以取得更小。
⑹ 当塔径不很大时,填料塔的造价便宜。
⑺ 对于易起泡的物系,填料塔更合适。
⑻ 对于腐蚀性物系,填料塔更合适。
⑼ 对于热敏性物系,采用填料塔较好。
⑽ 填料塔的压降比板式塔小,更适于真空操作。
4#
taien 发表于 2011-7-26 16:49:43 | 只看该作者
是啊,不错的,好东西
您需要登录后才可以回帖 登录 | 注册

本版积分规则

百度或google

小黑屋|Archiver|手机版|油气回收网 ( 京ICP备09022351号 )

GMT+8, 2025-5-10 14:28 , Processed in 0.078000 second(s), 17 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表